Saturday, 12 July 2014

Posted by ihsan On 22:19
Metode eksplorasi langsung mempunyai pengertian bahwa pengamatan dapat dilakukan dengan kontak visual dan fisik dengan kondisi permukaan/bawah permukaan, terhadap endapan yang dicari, serta dapat dilakukan deskripsi megaskopis/mikroskopis, pengukuran, dan sampling terhadap objek yang dianalisis. Begitu juga dengan interpretasi yang dilakukan, dapat berhubungan langsung dengan fakta-fakta dari hasil pengamatan lapangan. Metode eksplorasi langsung ini dapat dilakukan (diterapkan) pada sepanjang kegiatan eksplorasi (tahap awal s/d detail).

Beberapa metode (aspek) yang akan dibahas sehubungan dengan Metode Eksplorasi Langsung ini adalah :

A. Pemetaan Geologi
Pemetaan geologi merupakan suatu kegiatan pendataan informasi-informasi geologi permukaan dan menghasilkan suatu bentuk laporan berupa peta geologi yang dapat memberikan gambaran mengenai penyebaran dan susunan batuan (lapisan batuan), serta memuat informasi gejala-gejala struktur geologi yang mungkin mempengaruhi pola penyebaran batuan pada daerah tersebut. Selain pemetaan informasi geologi, pada kegiatan ini juga sekaligus memetakan tanda-tanda mineralisasi yang berupa alterasi mineral.

Pada tahapan eksplorasi awal, pengumpulan data (informasi singkapan) dapat dilakukan dengan menggunakan palu dan kompas geologi, serta penentuan posisi melalui orientasi lapangan. Namun dalam tahapan eksplorasi lanjut s/d detail, pengamatan singkapan dapat diperluas dengan menggunakan metode-metode lain seperti uji sumur, uji parit, maupun bor tangan atau auger, sedangkan penentuan posisi dilakukan dengan menggunakan alat ukur permukaan seperti pemetaan dengan plane table atau dengan teodolit.

Pada saat pemetaan dapat dijumpai singkapan, singkapan dapat didefinisikan sebagai bagian dari tubuh batuan/urat/badan bijih yang tersingkap (muncul) di permukaan . Singkapan biasanya dapat dijumpai pada lembah-lembah sungai, dikarenakan terjadi erosi akibat dari aliran air sungai sehingga menyebabkan batuan tersingkap. Namun ada juga pada kondisi dimana batuan menonjol secara alami akibat gaya gaya endogen yang bersala dari dalam bumi atau karena gerakan atau gesekan kerak bumi. Informasi-informasi yang dapat dipelajari atau dihasilkan dari kegiatan pemetaan geologi/alterasi antara lain adalah posisi atau letak singkapan (batuan, urat, atau batubara). Penyebaran, arah, dan bentuk permukaan dari endapan, bijih, atau batubara. Penyebaran dan pola alterasi yang ada.


B. Parit Uji 
Paritan uji dibangun dengan tujuan untuk mengetahui tebal lapisan permukaan, kemiringan perlapisan, struktur tanah dan lain-lain. Pada Pembuatan parit memiliki keterbatasan yaitu hanya bisa dilakukan pada overburden yang tipis, karena pada pembuatan parit kedalaman yang efektif dan ekonomis yang dapat dibuat hanya sedalam 2 - 2,5 meter, selebih dari itu pembuatan parit dinilai tidak efektif dan ekonomis. Pembuatan parit ini dilakukan dengan arah tegak lurus ore body dan jika pembuatan parit ini dilakukan di tepi sungai maka pembuatan parit harus tegak lurus dengan arah arus sungai.

Trenching (pembuatan paritan) merupakan salah satu cara dalam observasi singkapan atau dalam pencarian sumber (badan) bijih/endapan. Pada pengamatan (observasi) singkapan, paritan uji dilakukan dengan cara menggali tanah penutup dengan arah relatif tegak lurus bidang perlapisan (terutama pada endapan berlapis). Informasi yang diperoleh antara lain ; jurus bidang perlapisan, kemiringan lapisan, ketebalan lapisan, karakteristik perlapisan (ada split atau sisipan), serta dapat sebagai lokasi sampling.


C. Sumur Uji
Pembuatan sumur uji atau test pit dimaksudkan untuk mendapatkan hasil lebih akurat dari pembuatan parit uji, sumur uji dibuat dengan menggali lubang sedalam 10 sampai 20 meter. Pada pembuatan sumur uji harus diperhatikan beberapa faktor, seperti adanya bongkahan bongkahan yang akan mempersulit dalam proses penggalian. Faktor lain yang juga harus diperhatikan adalah adanya air yang akan menyulitkan dalam proses penggalian dan pada proses pengamatan struktur batuan yang ada pada sumur uji yang telah dibuat. Hal-hal lain yang perlu diperhatikan dari penggalian sumur adalah gejala longsoran, keluarnya gas beracun, dan lain-lain.

Pembuatan sumur uji ini umum dilakukan pada eksplorasi endapan-endapan yang berhubungan dengan pelapukan dan endapan-endapan berlapis. Pada endapan berlapis, pembuatan sumur uji ditujukan untuk mendapatkan kemenerusan lapisan dalam arah kemiringan, variasi litologi atap dan lantai, ketebalan lapisan, dan karakteristik variasi endapan secara vertikal, serta dapat digunakan sebagai lokasi sampling. Pada endapan yang berhubungan dengan pelapukan (lateritik atau residual), pembuatan sumur uji ditujukan untuk mendapatkan batas-batas zona lapisan (zona tanah, zona residual, zona lateritik), ketebalan masing-masing zona, variasi vertikal masing-masing zona, serta pada deretan sumur uji dapat dilakukan pemodelan bentuk endapan.


D. Pemboran Eksplorasi 
Pada prinsipnya pemboran adalah suatu kegiatan pembuatan lubang berdiameter kecil pada suatu target eksplorasi dengan kedalaman mencakup ratusan meter untuk memperoleh data yang representatif.

Dalam melakukan perencanaan pemboran, hal-hal yang perlu diperhatikan dan direncanakan dengan baik adalah kondisi geologi dan topografi, tipe pemboran yang akan digunakan, spasi pemboran, waktu pemboran, dan pelaksana (kontraktor) pemboran.

Informasi dari lubang bor dapat diperoleh dari beberapa sumber batuan, inti bor atau sludge, geofisika bawah permukaan; dan informasi dari hasil pemboran. Pada bagian ini akan lebih ditekankan pada pengamatan geologi.
Salah satu keputusan penting di dalam kegiatan eksplorasi adalah menentukan kapan kegiatan pemboran dimulai dan diakhiri. Pelaksanaan pemboran sangat penting jika kegiatan yang dilakukan adalah menentukan zona mineralisasi dari permukaan. Kegiatan ini dilakukan untuk memperoleh gambaran mineralisasi dari permukaan sebaik mungkin, namun demikian kegiatan pemboran dapat dihentikan jika telah dapat mengetahui gambaran geologi permukaan dan mineralisasi bawah permukaan secara menyeluruh.
Posted by ihsan On 22:12
Metode eksplorasi tidak langsung adalah kegiatan eksplorasi yang dilakukan dengan tidak berhubungan langsung dengan bahan atau endapan bahan galian yang dicari. Kegiatan eksplorasi ini dilakukan melalui mengamati atau menganalisis kelainan kelainan sifat sifat baik itu sifat fisik maupun sifat kimia dari batuan. Ada beberapa metode yang umum digunakan untuk melakukan eksplorasi tidak langsung diantaranya adalah; 
 
A. Metode Geofisika 
Eksplorasi geofisika dilakukan berdasarkan perbedaan dari sifat fisik dari batuan, mineral dan bijih dari endapan yang diukur. Secara umum eksplorasi geofisika dilakukan dengan beberapa metode antara lain yaitu;

1.Metode Magnetik 
 
Metode magnetik pada dasarnya adalah memetakan gangguan lokal pada medan magnetik bumi yang disebabkan oleh variasi kemagnetan batuan. Metode ini adalah metode geofisika tertua yang dikenal oleh manusia. Sejarah metode ini dimulai dari kompas magnetik yang pertama ditemukan di Cina 3000 tahun yang lalu. Dalam perkembangannya medan magnetik bumi telah digunakan dalam eksplorasi bijih besi pada eksplorasi di Swedia. Alat untuk menggunakan metode magnetik adalah magnetometer. Saat ini metode magnetik merupakan salah satu metode geofisika yang paling banyak digunakan orang karena selain mudah penggunaannya juga murah pemakaiannya. Bijih yang mengandung mineral magnetik akan menimbulkan efek langsung pada peralatan, sehingga dengan segera dapat diketahui.

Metoda eksplorasi dengan magnetik sangat berguna dalam pencarian sasaran eksplorasi sebagai berikut :
  • Mencari endapan placer magnetik pada endapan sungai
  • Mencari deposit bijih besi magnetik di bawah permukaan 
  • Mencari bijih sulfida yang kebetulan mengandung mineral magnetit sebagai mineral ikutan 
  • Intrusi batuan basa dapat diketahui kalau kebetulan mengandung magnetit dalam jumlah cukup 
  • Untuk dapat mengetahui ketebalan lapisan penutup pada suatu batuan beku yang mengandung mineral magnetik.

2. Metode Geolistrik

Metode ini mengukur dan menyelidiki sifat kelistrikan yang dimiliki oleh batuan atau mineral. Mineral-mineral sulfida pada umumnya bisa dikenali dengan metode ini dikarenakan oleh sifat fisisnya yang mudah menghantarkan listrik yang diinjeksikan ke dalam bumi.
 

Dalam cara pengukuran tahanan jenis batuan di dalam bumi biasanya dipakai sistem empat elektrode yang dikontakan dengan baik pada bumi. dua elektrode dipakai untuk memasukan arus listrik ke dalam bumi, disebut elektrode arus (current electrode) disingkat C, dan dua elektrode lainnya dipakai untuk mengukur voltage yang timbul karena arus tadi, elektrode ini disebut elektrode potensial atau “potential electode” disingkat P. ada beberapa cara dalam penyusun ke empat elektode tersebut, dua diantaranya banyak yang dipakai adalah cara Wenner dan cara Shlumberger.

3. Metode Seismik

Tujuan utama metode seismik adalah mengukur cepat rambat dari jenis perlapisan yang terdiri dari batuan dengan cepat rambat berbeda tiap batuan yang akan diterima oleh alat penerima getaran disebut geofon. Metoda ini jarang dipergunakan dalam penyelidikan pertambangan bijih tetapi banyak dipergunakan dalam penyelidikan minyak bumi.

Geofon-geofon yang dipasang secara teratur di sekitar lobang ledakan tadi akan terbias atau refraksi. Dengan mengetahui waktu ledakan dan waktu kedatangan gelombang-gelombang tadi, maka dapat diketahui kecepatan rambatan waktu getaran melalui perlapisan-perlapisan batuan. Dengan demikian konfigurasi struktur bahwa permukaan dapat diketahui. Gelombang akan merambat dengan kecepatan yang berbeda pada batuan yang berbeda-beda. Geophone merupakan alat penerima gelombang yang dipantulkan kepermukaan, hidrophone untuk gelombang di dasar laut

Cepat rambat gelombang seismik pada batuan tergantung pada jenis batuan, derajat pelapukan, derajat pergerakan, tekanan, porositas (kadar air) dan, Umur (diagenesa, konsolidasi, dll)


B. Metode Geokoimia

Eksplorasi geokimia khusus mengkonsentrasikan pada pengukuran kelimpahan, distribusi, dan migrasi unsur unsur bijih atau unsur unsur yang berhubungan erat dengan bijih, dengan tujuan mendeteksi endapan bijih. Secara sederhana eksplorasi geokimia adalah pengukuran secara sistematis satu atau lebih unsur jejak dalam batuan, tanah, sedimen sungai aktif, vegetasi, air, atau gas untuk mendapatkan anomali geokimia yaitu konsentrai abnormal dari unsur tertentu yang kontras terhadap lingkungannya.

Pengukuran sistimatika terhadap satu atau lebih unsur jejak (trace elements) pada batuan, tanah, stream, air atau gas. Tujuannya untuk mencari anomali geokimia berupa konsentrasi unsur-unsur yang kontras terhadap lingkungannya atau background geokimia.

Anomali dihasilkan dari mobilitas dan dispresi unsur-unsur yang terkonsentrasi pada zona mineralisasi. Anomali merupakan perbedaan-perbedaan yang mencolok antara satu titik atau batuan dengan titik lainnya.

Pada dasarnya eksplorasi jenis ini lebih cenderung untuk menentukan perbedaan mendasar (anomali) unsur-unsur yang terdapat pada tanah atau sampel yang kita cari. Proses untuk membedakan unsur ini dilakukan dengan beberapa reaksi kimia.

Friday, 28 March 2014

Posted by ihsan On 03:39
Reaksi bahan peledak yang dimaksudkan adalah bahan peledak kimia yang didefinisikan sebagai suatu bahan kimia senyawa tunggal atau campuran berbentuk padat, cair, atau campurannya yang apabila diberi aksi panas, benturan, gesekan atau ledakan awal akan mengalami suatu reaksi kimia eksotermis sangat cepat dan hasil reaksinya sebagian atau seluruhnya berbentuk gas disertai panas dan tekanan sangat tinggi yang secara kimia lebih stabil


Reaksi dan produk peledakan
  1. Pembakaran, adalah reaksi permukaan yang eksotermis dan dijaga keberlangsungannya oleh panas yang dihasilkan dari reaksi itu sendiri dan produknya berupa pelepasan gas-gas. Reaksi pembakaran memerlukan unsur oksigen (O2) baik yang terdapat di alam bebas maupun dari ikatan molekuler bahan atau material yang terbakar. Untuk menghentikan kebakaran cukup dengan mengisolasi material yang terbakar dari oksigen. Contoh reaksi minyak disel (diesel oil) yang terbakar sebagai berikut. CH3(CH2)10CH3 + 18½ O2 ® 12 CO2 + 13 H2O.
  2. Deflagrasi, adalah proses kimia eksotermis di mana transmisi dari reaksi dekomposisi didasarkan pada konduktivitas termal (panas). Deflagrasi merupakan fenomena reaksi permukaan yang reaksinya meningkat menjadiledakan dan menimbulkan gelombang kejut (shock wave) dengan kecepatan rambat rendah, yaitu antara 300 – 1000 m/s atau lebih rendah dari kecep suara (subsonic).
  3. Ledakan, menurut Berthelot, adalah ekspansi seketika yang cepat dari gas menjadi bervolume lebih besar dari sebelumnya diiringi suara keras dan efek mekanis yang merusak. Dari definisi tersebut dapat tersirat bahwa ledakan tidak melibatkan reaksi kimia, tapi kemunculannya disebabkan oleh transfer energi ke gerakan massa yang menimbulkan efek mekanis merusak disertai panas dan bunyi yang keras. Contoh ledakan antara lain balon karet ditiup terus akhirnya meledak, tangki BBM terkena panas terus menerus bisa meledak, dan lain-lain.
  4. Detonasi, adalah proses kimia-fisika yang mempunyai kecepatan reaksi sangat tinggi, sehingga menghasilkan gas dan temperature sangat besar yang semuanya membangun ekspansi gaya yang sangat besar pula. Kecepatan reaksi yang sangat tinggi tersebut menyebarkan tekanan panas ke seluruh zona peledakan dalam bentuk gelombang tekan kejut (shock compression wave) dan proses ini berlangsung terus menerus untuk membebaskan energi hingga berakhir dengan ekspansi hasil reaksinya. Kecepatan rambat reaksi pada proses detonasi ini berkisar antara 3000 – 7500 m/s. Contoh kecepatan reaksi ANFO sekitar 4500 m/s. Sementara itu shock compression wave mempunyai daya dorong sangat tinggi dan mampu merobek retakan yang sudah ada sebelumnya menjadi retakan yang lebih besar. Disamping itu shock wave dapat menimbulkan symphatetic detonation, oleh sebab itu peranannya sangat penting di dalam menentukan jarak aman (safety distance) antar lubang.
Posted by ihsan On 03:31

Karakter detonasi menggambarkan prilaku suatu bahan peledak ketika meledak untuk menghancurkan batuan. Beberapa karakter detonasi yang penting diketahui meliputi: 

1. Kekuatan (Strength) Bahan Peledak

Kekuatan bahan peledak berkaitan dengan energi yang mampu dihasilkan oleh suatu bahan peledak. Pada hakekatnya kekuatan suatu bahan peledak tergantung pada campuran kimiawi yang mampu menghasilkan energi panas ketika terjadi inisiasi. Terdapat dua jenis sebutan kekuatan bahan peledak komersial yang selalu dicantumkan pada spesifikasi bahan peledak oleh pabrik pembuatnya, yaitu kekuatan absolut dan relatif. Berikut ini diuraikan tentang kekuatan bahan peledak dan cara perhitungannya.



2. Kecepatan Detonasi (Detonation Velocity)

Kecepatan detonasi disebut juga dengan velocity of detonation atau VoD merupakan sifat bahan peledak yang sangat penting yang secara umum dapat diartikan sebagai laju rambatan gelombang detonasi sepanjang bahan peledak dengan satuan millimeter per sekon (m/s) atau feet per second (fps). Kecepatan detonasi diukur dalam kondisi terkurung (confined detonation velocity) atau tidak terkurung (unconfined detonation velocity).

Kecepatan detonasi terkurung adalah ukuran kecepatan gelombang detonasi (detonation wave) yang merambat melalui kolom bahan peledak di dalam lubang ledak atau ruang terkurung lainnya. Sedangkan kecepatan detonasi tidak terkurung menunjukkan kecepatan detonasi bahan peledak apabila bahan peledak tersebut diledakkan dalam keadaan terbuka. Karena bahan peledak umumnya digunakan dalam keadaan derajat pengurungan tertentu, maka harga kecepatan detonasi dalam keadaan terbuka menjadi lebih berarti.

Kecepatan detonasi bahan peledak harus melebihi kecepatan suara massa batuan (impedance matching), sehingga akan menimbulkan energi kejut (shock energy) yang mampu memecahkan batuan. Untuk peledakan pada batuan keras dipakai bahan peledak yang mempunyai kecepatan detonasi tinggi (sifat shattering effect) dan pada batuan lemah dipakai bahan peledak yang kecepatan detonasinya rendah (sifat heaving effect).

Nilai kecepatan detonasi bervariasi tergantung diameter, densitas, dan ukuran partikel bahan peledak. Untuk bahan peledak komposit (non-ideal) tergantung pula pada derajat pengurungannya (confinement degree). Kecepatan detonasi tidak terkurung umumnya 70 – 80% kecepatan detonasi terkurung, sedangkan kecepatan detonasi bahan peledak komersial bervariasi antara 1500 – 8500 m/s atau sekitar 5000 – 25.000 fps. Kecepatan detonasi ANFO antara 2500 – 4500 m/s tergantung pada diameter lubang ledak. Apabila diameter dikurangi sampai batas tertentu akan terjadi gagal ledak (misfire) karena perambatan tidak dapat berlangsung; diameter ini disebut “diameter kritis” atau critical diameter.

Kecepatan detonasi bahan peledak ANFO (bentuk butiran) akan menurun seiring dengan bertambahnya air karena ANFO dapat larut terhadap air. Suatu penelitian memperlihatkan bahwa ANFO yang mengandung 10% air (dalam satuan berat) dapat menurunkan kecepatan detonasi hingga tinggal 42%, yaitu dari VOD ANFO kering 3800 m/s turun menjadi hanya tinggal 1600 m/s (lihat Gambar 2.2). Akibat penurunan kecepatan detonasi ANFO yang sangat tajam akan mengurangi energi ledak secara drastis atau bahkan tidak akan meledak sama sekali (gagal ledak). 


3. Tekanan Detonasi (Detonation Pressure)

Tekanan detonasi adalah tekanan yang terjadi disepanjang zona reaksi peledakan hingga terbentuk reaksi kimia seimbang sampai ujung bahan peledak yang disebut dgn bidang Chapman-Jouguet (C-J plane) seperti terlihat pada Gambar 2.3. Umumnya mempunyai satuan MPa. Tekanan ini merupakan fungsi dari kecepatan detonasi dan densitas bahan peledak. Dari penelitian oleh Cook menggunakan foto sinar-x diperoleh formulasi tekanan detonasi sbb:

4. Tekanan Pada Lubang Ledak (Borehole Pressure)

Gas hasil detonasi bahan peledak akan memberikan tekanan terhadap dinding lubang ledak dan terus berekspansi menembus media untuk mencapai keseimbangan. Keseimbangan tekanan gas tercapai setelah gas tersebut ter-bebaskan, yaitu ketika telah mencapai udara luar. Biasa tekanan gas pada dinding lubang ledak sekitar 50% dari tekanan detonasi. 

Volume dan laju kecepatan gas yang dihasilkan peledakan akan mengontrol tumpukan dan lemparan fragmen batuan (lihat Gambar 2.4). Makin besar tekanan pada dinding lubang ledak akan menghasilkan jarak lemparan tumpukan hasil peledakan semakin jauh.
Posted by ihsan On 02:50
Sifat fisik bahan peledak merupakan suatu kenampakan nyata dari sifat bahan peledak ketika menghadapi perubahan kondisi lingkungan sekitarnya. Kenampakan nyata inilah yang harus diamati dan diketahui tanda-tandanya oleh seorang juru ledak untuk menjastifikasi suatu bahan peledak yang rusak, rusak tapi masih bisa dipakai, dan tidak rusak. Kualitas bahan peledak umumnya akan menurun seiring dengan derajat kerusakannya, artinya pada suatu bahan peledak yang rusak energi yang dihasilkan akan berkurang.

A. Densitas 

Densitas secara umum adalah angka yang menyatakan perbandingan berat per volume. Pernyataan densitas pada bahan peledak dapat mengekspresikan beberapa pengertian, yaitu: 
  1. Densitas bahan peledak adalah berat bahan peledak per unit volume dinyatakan dalam satuan gr/cc
  2. Densitas pengisian (loading density) adalah berat bahan peledak per meter kolom lubang tembak (kg/m) 
  3. Cartridge count atau stick count adalah jumlah cartridge (bahan peledak berbentuk pasta yang sudah dikemas) dengan ukuran 1¼” x 8” di dalam kotak seberat 50 lb atau 140 dibagi berat jenis bahan peledak. 

Densitas bahan peledak berkisar antara 0,6 – 1,7 gr/cc, sebagai contoh densitas ANFO antara 0,8 – 0,85 gr/cc. Biasanya bahan peledak yang mempunyai densitas tinggi akan menghasilkan kecepatan detonasi dan tekanan yang tinggi. Bila diharapkan fragmentasi hasil peledakan berukuran kecil-kecil diperlukan bahan peledak dengan densitas tinggi; bila sebaliknya digunakan bahan peledak dengan densitas rendah. Demikian pula, bila batuan yang akan diledakkan berbentuk massif atau keras, maka digunakan bahan peledak yang mempunyai densitas tinggi; sebaliknya pada batuan berstruktur atau lunak dapat digunakan bahan peledak dengan densitas rendah. 

Densitas pengisian ditentukan dengan cara perhitungan volume silinder, karena lubang ledak berbentuk silinder yang tingginya sesuai dengan kedalaman lubang.

B. Sensitifitas

Sensitifitas adalah sifat yang menunjukkan tingkat kemudahan inisiasi bahan peledak atau ukuran minimal booster yang diperlukan. Sifat sensitif bahan peledak bervariasi tergantung pada kompisisi kimia bahan peledak, diameter, temperature, dan tekanan ambient.

Bahan peledak ANFO tidak sensitif terhadap detonator No. 8 dan untuk meledak-kannya diperlukan primer (yaitu booster yang sudah dilengkapi detonator No. 8 atau detonating cord 10 gr/m) di dalam lubang ledak. Oleh sebab itu ANFO disebut bahan peledak peka (sensitif) terhadap primer atau “peka primer”.


C. Ketahanan terhadap air (water resistance)

Ketahanan bahan peledak terhadap air adalah ukuran kemampuan suatu bahan peledak untuk melawan air disekitarnya tanpa kehilangan sensitifitas atau efisiensi. Apabila suatu bahan peledak larut dalam air dalam waktu yang pendek (mudah larut), berarti bahan peledak tersebut dikatagorikan mempunyai ketahanan terhadap air yang “buruk” atau poor, sebaliknya bila tidak larut dalam air disebut “sangat baik” atau excellent. 

Contoh bahan peledak yang mempunyai ketahanan terhadap air “buruk” adalah ANFO, sedangkan untuk bahan peledak jenis emulsi, watergel atau slurries dan bahan peledak berbentuk cartridge “sangat baik” daya tahannya terhadap air. Apabila di dalam lubang ledak terdapat air dan akan digunakan ANFO sebagai bahan peledaknya, umumnya digunakan selubung plastik khusus untuk membungkus ANFO tersebut sebelum dimasukkan ke dalam lubang ledak. 


D. Kestabilan kimia (chemical stability)

Kestabilan kimia bahan peledak maksudnya adalah kemampuan untuk tidak berubah secara kimia dan tetap mempertahankan sensitifitas selama dalam penyimpanan di dalam gudang dengan kondisi tertentu. Bahan peledak yang tidak stabil, misalnya bahan peledak berbasis nitrogliserin atau NG-based explosives, mempunyai kemampuan stabilitas lebih pendek dan cepat rusak. 

Faktor-faktor yang mempercepat ketidak-stabilan kimiawi antara lain panas, dingin, kelembaban, kualitas bahan baku, kontaminasi, pengepakan, dan fasilitas gudang bahan peledak. Tanda-tanda kerusakan bahan peledak dapat berupa kenampakan kristalisasi, penambahan viskositas, dan penambahan densitas. Gudang bahan peledak bawah tanah akan mengurangi efek perubahan temperature. 


E. Karakteristik gas (fumes characteristics)

Detonasi bahan peledak akan menghasilkan fume, yaitu gas-gas, baik yang tidak beracun (non-toxic) maupun yang mengandung racun (toxic). Gas-gas hasil peledakan yang tidak beracun seperti uap air (H2O), karbondioksida (CO2), dan nitrogen (N2), sedangkan yang beracun adalah nitrogen monoksida (NO), nitrogen oksida (NO2), dan karbon monoksida (CO). Pada peledakan di tambang bawah tanah gas-gas tersebut perlu mendapat perhatian khusus, yaitu dengan sistem ventilasi yang memadai; sedangkan di tambang terbuka kewaspadaan ditingkat-kan bila gerakan angin yang rendah. 

Diharapkan dari detonasi suatu bahan peledak komersial tidak menghasilkan gas-gas beracun, namun kenyataan di lapangan hal tersebut sulit dihindari akibat beberapa faktor berikut ini:
  1. pencampuran ramuan bahan peledak yang meliputi unsur oksida dan bahan bakar (fuel) tidak seimbang, sehingga tidak mencapai zero oxygen balance,
  2. letak primer yang tidak tepat, 
  3. kurang tertutup karena pemasangan stemming kurang padat dan kuat, 
  4. adanya air dalam lubang ledak, 
  5. sistem waktu tunda (delay time system) tidak tepat, dan 
  6. kemungkinan adanya reaksi antara bahan peledak dengan batuan (sulfida atau karbonat). 

Fumes hasil peledakan memperlihatkan warna yang berbeda yang dapat dilihat sesaat setelah peledakan terjadi. Gas berwarna coklat-orange adalah fume dari gas NO hasil reaksi bahan peledak basah karena lubang ledak berair. Gas berwarna putih diduga kabut dari uap air (H2O) yang juga menandakan terlalu banyak air di dalam lubang ledak, karena panas yang luar biasa merubah seketika fase cair menjadi kabut. Kadang-kadang muncul pula gas berwarna kehitaman yang mungkin hasil pembakaran yang tidak sempurna.

Friday, 20 December 2013

Posted by ihsan On 07:29
The International Handbook of Coal Petrography (1963) menyebutkan bahwa batubara adalah batuan sedimen yang mudah terbakar, terbentuk dari sisa tanaman dalam variasi tingkat pengawetan, diikat proses kompaksi dan terkubur dalam cekungan-cekungan pada kedalaman yang bervariasi. 

Sedangkan Prijono (Dalam Sunarijanto, dkk, 2008) berpendapat bahwa batubara adalah bahan bakar hidrokarbon tertambat yang terbentuk dari sisa tumbuh-tumbuhan yang terendapkan dalam lingkungan bebas oksigen serta terkena pengaruh temperatur dan tekanan yang berlangsung sangat lama. Sedang menurut Undang-undang Nomor 4 tahun 2009 tentang Pertambangan Mineral dan Batubara dijelaskan bahwa ”batubara adalah endapan senyawa organik karbonan yang terbentuk secara alamiah dari sisa tumbuh-tumbuhan.

Dari berbagai definisi di atas, dapat disimpulkan bahwa batubara adalah mineral organik yang dapat terbakar, terbentuk dari sisa tumbuhan purba yang mengendap di dalam tanah selama jutaan tahun. Endapan tersebut telah mengalami berbagai perubahan bentuk/komposisi sebagai akibat dari dari adanya proses fisika dan kimia yang berlangsung selama waktu pengendapannya. Oleh karena itu, batubara termasuk dalam katagori bahan bakar fosil.

Batubara merupakan salah satu sumber energi fosil alternatif yang cadangannya cukup besar di dunia. Bagi Indonesia, yang sumber energi minyak buminya sudah semakin menipis, pengusahaan penggalian batubara sudah merupakan suatu keniscayaan. Hampir setiap pulau besar di Indonesia memiliki cadangan batubara, walau dalam kuantitas dan kualitas yang berbeda.

Terdapat dua model formasi pembentuk batubara (coal bearing formation), yakni model formasi insitu dan model formasi endapan material tertransportasi (teori drift). Berikut akan dijelaskan masing-masing model formasi pembentuk batubara tersebut.

1). Model Formasi Insitu

Menurut teori ini, batubara terbentuk pada lokasi dimana pohon-pohon atau tumbuhan kuno pembentukya tumbuh. Lingkungan tempat tumbuhnya pohon-pohon kayu pembentuk batubara itu adalah pada daerah rawa atau hutan basah. Kejadian pembentukannya diawali dengan tumbangnya pohon-pohon kuno tersebut, disebabkan oleh berbagai faktor, seperti angin (badai), dan peristiwa alam lainnya. Pohon-pohon yang tumbang tersebut langsung tenggelam ke dasar rawa. Air hujan yang masuk ke rawa dengan membawa tanah atau batuan yang tererosi pada daerah sekitar rawa akan menjadikan pohon-pohon tersebut tetap tenggelam dan tertimbun.

Demikianlah seterusnya, bahwa semakin lama semakin teballah tanah penutup pohon-pohonan tersebut. Dalam hal ini pohon-pohon tersebut tidak menjadi busuk atau tidak berubah menjadi humus, tetapi sebaliknya mengalami pengawetan alami. Dengan adanya rentang waktu yang lama, puluhan atau bahkan ratusan juta tahun, ditambah dengan pengaruh tekanan dan panas, pohon-pohonan kuno tersebut mengalami perubahan secara bertahap, yakni mulai dari fase penggambutan sampai ke fase pembatubaraan.

2) Model Formasi Transportasi Material (Teori Drift)

Berdasarkan teori drift ini, batubara terbentuk dari timbunan pohon-pohon kuno atau sisa-sisa tumbuhan yang tertransportasikan oleh air dari tempat tumbuhnya. Dengan kata lain pohon-pohon pembentuk batubara itu tumbang pada lokasi tumbuhnya dan dihanyutkan oleh air sampai berkumpul pada suatu cekungan dan selanjutnya mengalami proses pembenaman ke dasar cekungan, lalu ditimbun oleh tanah yang terbawa oleh air dari lokasi sekitar cekungan.
Seterusnya dengan perjalanan waktu yang panjang dan dipengaruhi oleh tekanan dan panas, maka terjadi perubahan terhadap pohon-pohon atau sisa tumbuhan itu mulai dari fase penggambutan sampai pada fase pembatubaraan.

Terdapat perbedaan tipe endapan batubara dari kedua formasi pembentukan tersebut. Batubara insitu biasanya lebih tebal, endapannya menerus, terdiri dari sedikit lapisan, dan relatif tidak memiliki pengotor. Sedangkan batubara yang terbentuk atau berasal dari transportasi material (berdasarkan teori drift) ini biasanya terjadi pada delta-delta kuno dengan ciri-ciri: lapisannya tipis, endapannya terputus-putus (splitting), banyak lapisan (multiple seam), banyak pengotor, dan kandungan abunya biasanya tinggi. 

Dari kedua teori tentang formasi pembentukan batubara tersebut di atas dapat diketahui bahwa kondisi lingkungan geologi yang dipersyaratkan untuk dapat terjadinya batubara adalah: berbentuk cekungan berawa, berdekatan dengan laut atau pada daerah yang mengalami penurunan (subsidence), karena hanya pada lingkungan seperti itulah memungkinkan akumulasi tumbuhan kuno yang tumbang itu dapat mengalami penenggelaman dan penimbunan oleh sedimentasi. Tanpa adanya penenggelaman dan penimbunan oleh sedimentasi, maka proses perubahan dari kayu menjadi gambut dan seterusnya menjadi batubara tidak akan terjadi, malahan kayu itu akan menjadi lapuk dan berubah menjadi humus.

Terdapat dua tahapan proses pembentukan batubara, yakni proses penggambutan (peatification) dan proses pembatubaraan (coalification). Pada proses penggambutan terjadi perubahan yang disebabkan oleh makhluk hidup, atau disebut dengan proses biokimia, sedangkan pada proses pembatubaraan prosesnya adalah bersifat geokimia.

Pada proses biokimia, sisa-sisa tumbuhan atau pohon-pohonan kuno yang tumbang itu terakumulasi dan tersimpan dalam lingkungan bebas oksigen (anaerobik) di daerah rawa dengan sistem drainase (drainage system) yang jelek, dimana material tersebut selalu terendam beberapa inchi di bawah muka air rawa. Pada proses ini material tumbuhan akan mengalami pembusukan, tetapi tidak terlapukan. Material yang terbusukkan akan melepaskan unsur-unsur hidrogen (H), Nitrogen (N), Oksigen (O), dan Karbon (C) dalam bentuk senyawa-senyawa: CO2, H2O, dan NH3 untuk menjadi humus. Selanjutnya bakteri-bakteri anaerobik serta fungi merubah material tadi menjadi gambut (peat). (Susilawati, 1992 dalam Sunarijanto, 2008: 5).

Sedangkan pada proses pembatubaraan (coalification), terjadi proses diagenesis dari komponen-komponen organik yang terdapat pada gambut. Peristiwa diagenesis ini menyebabkan naiknya temperatur dalam gambut itu. Dengan semakin tebalnya timbunan tanah yang terbawa air, yang menimbun material gambut tersebut, terjadi pula peningkatan tekanan. Kombinasi dari adanya proses biokimia, proses kimia, dan proses fisika, yakni berupa tekanan oleh material penutup gambut itu, dalam jangka waktu geologi yang panjang, gambut akan berubah menjadi batubara. Akibat dari proses ini terjadi peningkatan persentase kandungan Karbon (C), sedangkan kandungan Hidrogen (H) dan Oksigen (O) akan menjadi menurun, sehingga dihasilkan batubara dalam berbagai tingkat mutu (Susilawati, 1992 dalam Sunarijanto, 2008: 5).


Secara berurutan, proses yang dilalui oleh endapan sisa-sisa tumbuhan sampai menjadi batubara yang tertinggi kualitasnya adalah sebagai berikut:
  1. Sisa-sisa tumbuhan mengalami proses biokimia berubah menjadi gambut (peat);
  2. Gambut mengalami proses diagenesis berubah menjadi batubara muda (lignite) atau disebut juga batubara coklat (brown coal);
  3. Batubara muda (lignite atau brown coal) menerima tekanan dari tanah yang menutupinya dan mengalami peningkatan suhu secara terus menerus dalam waktu jutaan tahun, akan berubah menjadi batubara subbituminus (sub-bituminous coal);
  4. Batubara subbituminus tetap mengalami peristiwa kimia dan fisika sebagai akibat dari semakin tingginya tekanan dan temperatur dan dalam waktu yang semakin panjang, berubah menjadi batubara bituminus (bitumninous coal);
  5. Batubara bitumninus ini juga mengalami proses kimia dan fisika, sehingga batubara itu semakin padat, kandungan karbon semakin tinggi, menyebabkan warna semakin hitam mengkilat. Dalam fase ini terbentuk antrasit (anthracite);
  6. Antrasit, juga mengalami peningkatan tekanan dan temperatur, berubah menjadi meta antrasit (meta anthrasite);
  7. Meta antrasit selanjutnya akan berubah menjadi grafit (graphite). Peristiwa perubahan atrasit menjadi grafit disebut dengan penggrafitan (graphitization).
Dalam semua tingkatan pembentukan batubara itu terdapat berbagai unsur yang sangat mempengaruhi peringkat mutu batubaranya dan sebagai dasar pembagian klas penggunaannya. Secara garis besarnya dalam batubara terdapat unsur-unsur:
  • Kandungan air total (total moisture), yakni jumlah kandungan air yang ada pada fisik batubara, yang terdiri dari air dalam batubara itu sendiri dan air yang terbawa waktu melakukan penambangan.
  • Kandungan air bawaan (inheren moisture), yakni air yang ada dalam batubara itu mulai saat awal pembentukannya. Kadar air itu pada dasarnya akan mempengaruhi nilai batubara, artinya semakin tinggi kandungan air, maka semakin rendahlah mutu batubara tersebut.
  • Kandungan zat terbang (volatile matter), adalah semua unsur yang akan menguap (terbang) waktu batubara itu mengalami pemanasan. Volatile matter yang tinggi akan menyebabkan mutu batubara jadi rendah, karena pada intinya volatile matter tidak memberikan nilai kalor. Batubara dengan volatile matter tinggi, yang tertumpuk pada stockpile, akan mudah mengalami swabakar, terutama pada udara lembab dan adanya unsur pemicu oksidasi di dalamnya, seperti pirit dan sebagainya.
  • Total sulphur (belerang), adalah salah satu unsur yang dapat menurunkan mutu batubara, karena unsur belerang yang banyak akan menyebabkan rendahnya nilai kalor dan dapat menyebabkan kerusakan pada dapur pembakaran, serta juga menyebabkan adanya gas beracun.
  • Kandungan abu (ash content), adalah sejumlah material yang didapat dari sisa pembakaran batubara. Semakin tinggi kadar abu batubara, maka semakin rendahlah mutu batubara tersebut. Sebagaimana telah dijelaskan di atas, abu ini berasal dari material yang tidak dapat dioksidasi oleh oksgen.
  • Kandungan karbon tertambat (fixed carbon), adalah persentase karbon yang ada pada suatu satuan volume batubara. Semakin tinggi kadar karbon, maka semakin baguslah kualitas batubara tersebut, karena yang paling berguna dari batubara itu adalah karbon ini, karena karbonlah yang menghasilkan nilai kalori pada waktu dilakukan pembakaran batubara.
  • Nilai kalori (CV), adalah jumlah kalori yang dihasilkan per kg batubara yang dibakar. Semakin tinggi nilai kalorinya, semakin baguslah mutu batubaranya.






Thursday, 28 November 2013

Posted by ihsan On 23:34
Bieniawski (1976) mempublikasikan suatu klasifikasi massa batuan yang disebut Klasifikasi Geomekanika atau lebih dikenal dengan Rock Mass Rating (RMR). Setelah bertahun-tahun, klasifikasi massa batuan ini telah mengalami penyesuaian dikarenakan adanya penambahan data masukan sehingga Bieniawski membuat perubahan nilai rating pada parameter yang digunakan untuk penilaian klasifikasi massa batuan tersebut. Pada penelitian ini, klasifikasi massa batuan yang digunakan adalah klasifikasi massa batuan versi tahun 1989 (Bieniawski, 1989). 6 Parameter yang digunakan dalam klasifikasi massa batuan menggunakan Sistim RMR yaitu:

1. Kuat tekan uniaxial batuan utuh.




5. Kondisi air tanah.

6. Orientasi/arah bidang diskontinyu.


Pada penggunaan sistim klasifikasi ini, massa batuan dibagi kedalam daerah struktural yang memiliki kesamaan sifat berdasarkan 6 parameter di atas dan klasifikasi massa batuan untuk setiap daerah tersebut dibuat terpisah. Batas dari daerah struktur tersebut biasanya disesuaikan dengan kenampakan perubahan struktur geologi seperti patahan, perubahan kerapatan kekar, dan perubahan jenis batuan. RMR ini dapat digunakan untuk terowongan. lereng, dan pondasi.

Berikut tabel pembobotan nilai RMR,
Setelah semua parameter di masukkan ke dalam kelasnya masing masing, maka jumlahkan seluruh hasil dari pembobotan tersebut , lalu hasil tersebut masukkan ke tabel di bawah ini,

selanjutnya setelah di dapatkan nomor kelas dari batuan yang di ukur atau di hitung , maka kemudian masukkan ke dallam tabel terakhir,

maka dari serangkaian proses tersebut dapat diketahui berpa nilai stand up time , kohesi massa batuan , serta sudut geser dalam massa batuan terebut.